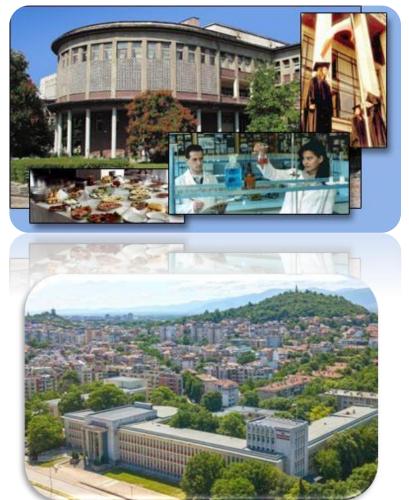
CAMEL MILK CHEESE:

Challenges, Processing, and Quality


Assessment

UNIVERSITY OF FOOD TECHNOLOGIES – PLOVDIV BULGARIA

Faculty of Technology

Department of Dairy and Milk Products Technology

Assoc. Prof. Tatyana Balabanova, PhD tbalabanova@uft-plovdiv.bg

Milk samples							
Properties	Camel	Cow	Mix (1:1)				
Physicochemical							
Dry matter, %	12.7±0.12 ^a 12.2±0.10 ^b		12.5±0.12°				
Water content, %	87.3±0.11ª	87.8±0.09 ^a	87.5±0.13ª				
Solids Not Fat,%	9.4±0.01 ^a	8.7 ± 0.05^{b}	9.1±0.01°				
Fats, %	3.3±0.01 ^a	3.5±0.05 ^a	3.4±0.05 ^a				
Proteins, %	3.3±0.01 ^a	3.3±0.02 ^a	3.3±0.01 ^a				
Carbohydrates, %	5.1±0.04 ^a	4.7±0.04 ^a	4.9±0.03 ^c				
Solids, %	1.0±0.02ª	0.7±0.01 ^b	0.9±0.03 ^a				
Density, g/cm ³	1.029±0.01ª	1.028±0.01 ^a	1.029±0.00 ^a				
Freezing pont, °C	- 0.542±0,002 ^a	- 0,554±0,001 ^b	- 0.550±0,001°				
Titrable acidity, °T	17.0±1.0 ^a	15.0±1.0 ^a	16.0±1.0ª				
рН	6.45±0.03 ^a	6.71±0.06 ^b	6.66±0.05 ^b				
Antibiotics	Negative	Negative	Negative				
	Sensory						
Appearance	A uniform liquid with foam on the surface	Uniform liquid	Uniform liquid				
Flavor	The flavor is distinct and has a slightly salty taste	Distinctive with a mildly sweet flavor	The flavor profile is specific, featuring both sweet and salty tastes				
Odor	Specific and pleasant	Specific and pleasant	Specific and pleasant				
Color	White	White with a slight creamy tint	White with a slight creamy tint				
Consistency	Uniform liquid	Uniform liquid	Uniform liquid				

Table 1. Physicochemical and Sensory Characteristics of Milk Samples

CAMEL MILK COW MILK High in Casein and Low in Lactose and Casein Low in Saturated Fats Lactose High in Saturated Fats Low in Cholesterol High in Cholesterol Easy to digest Difficult to digest 3X more Vitamin C Contains many 10x more Iron Allergens Higher in Calcium Higher in Vitamins A & B

Table 2. Amino Acid Composition of Milk Samples

Amino acids	Milk samples, % of total protein (TP)				
	Camel	Cow	Mix (1:1)		
Alanine	2.19±0.04 ^a	1.53±0.07 ^b	1.89±0.05 ^c		
Valine	6.32±0.05 ^a	4.68±0.05 ^b	5.56±0.06°		
Leucine	8.51±0.10 ^a	9.86±0.13 ^b	7.49±0.11°		
Isoleucine	4.94±0.08 ^a	5.64±0.07 ^b	4.35±0.08°		
Glycine	1.45±0.02 ^a	2.36±0.03 ^b	1.27±0.03°		
Proline	10.71±0.10 ^a	6.74±0.09 ^b	9.42±0.12°		
Serine	4.74±0.07 ^a	5.47±0.07 ^b	4.17±0.07℃		
Threonine	4.55±0.06 ^a	3.37±0.05 ^b	4.00±0.05°		
Methionine	2.81±0.05 ^a	1.36±0.03 ^b	2.47±0.01°		
Aspartic acid	6.30±0.07 ^a	8.22±0.05 ^b	5.55±0.08°		
Glutamic acid	17.52±0.15 ^a	15.14±0.17 ^b	16.74±0.14 ^c		
Phenilalanine	4.23±0.08 ^a	5.38±0.05 ^b	3.72±0.07°		
Tyrosine	6.11±0.03 ^a	6.69±0.01 ^b	5.38±0.01°		
Arginine	4.80±0.07 ^a	5.50±0.06 ^b	6.22±0.06 ^c		
Histidine	2.84±0.04 ^a	3.53±0.02 ^b	2.50±0.06 ^c		
Lysine	8.42±0.08 ^a	10.04±0.07 ^b	9.41±0.07°		
Cystine	1.36±0.02 ^a	1.71±0.02 ^b	1.20±0.03 ^c		
Tryptophan	2.20±0.02 ^a	2.78±0.03 ^b	2.94±0.03°		

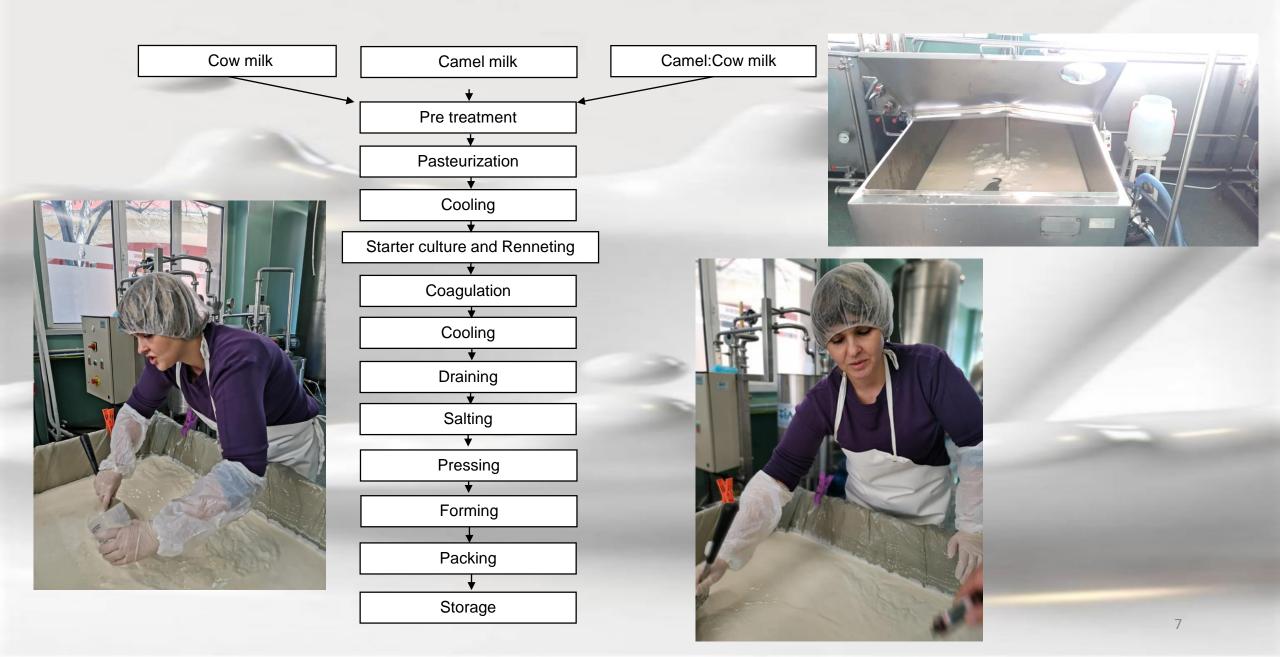


Table 3. Fatty Acid Composition of Milk Samples

Fatty acids	Classification	Milk sample, % of total fat			
C:D		Camel	Cow	Mix (1:1)	
	Saturated fatty acids				
C _{4:1}	Butyric	0.90±0.04 ^a	9.35±0.02 ^b	6.79±0.04 ^c	
C _{6:0}	Caproic	0.28±0.03 ^a	4.01±0.03 ^b	3.25±0.02 ^c	
C _{8:0}	Caprylic	0.22±0.01 ^a	0.78±0.03 ^b	0.32±0.03 ^c	
C _{10:0}	Capric	0.31±0.07 ^a	2.24±0.05 ^b	1.27±0.06 ^c	
C _{12:0}	Lauric	0.49±0.09 ^a	3.60±0.07 ^b	2.43±0.07 ^c	
C _{14:0}	Myristic	10.24±0.51 ^a	12.20±0.53 ^b	9.01±0.53 ^c	
C _{16:0}	Palmitic	29.16±1.13 ^a	23.25±1.14 ^b	27.78±1.13 ^a	
C _{18:0}	Stearic	12.13±0.46 ^a	10.12±0.46 ^b	9.62±0.48 ^c	
	Monounsaturated fatty acids				
C _{14:1}	Myristoleic	1.68±0.50 ^a	0.12±0.42 ^b	1.20±0.48 ^c	
C _{16:1}	Palmitoleic	3.09±1.30 ^a	0.93±0.28 ^b	2.52±0.30°	
C _{18:1n9c}	Oleic	34.23±0.80 ^a	30.04±0.79 ^b	28.20±0.87°	
	Polyunsaturated fatty acids				
C _{18:3n3c}	α-Linoleic	4.58±0.56 ^a	2.08±0.61 ^b	5.03±0.60 ^a	
C _{18:3n6c}	γ-Linoleic	0.50±0.01 ^a	0.80±0.02 ^b	0.64±0.01 ^c	
	Polyunsaturated fatty acids				
C _{18:3n3c}	Linolenic	2.19±0.02 ^a	0.48±0.03 ^b	1.93±0.03 ^c	

General Procedure for Producing Fresh Cheese

Storage of Cheese Samples

Chemical Composition

Indicators of Ripening

Microbiological Analyses

Determination of Fatty Acids

Determination of Amino Acids

Texture Profile Analysis

Sensory Assessment

Conclusion

- Camel milk is a highly nutritious dairy product that offers several health benefits and can be consumed daily as a beverage;
- It is rich in vitamins and minerals, and its small fat globules and low saturated fatty acid (SFA) content make it easy to digest;
- Additionally, the low incidence of allergic reactions among consumers can be attributed to its very low levels of β-lactoglobulin and a high concentration of β-casein in its protein composition;

Conclusion

- Camel milk has a low tendency to coagulate, mainly due to the absence of interactions between κ-casein and β-lactoglobulin. This feature presents several challenges in producing dairy products.
- Research indicates that using starter cultures and camel chymosin for cheese production from camel milk—whether used alone or in combination with other types of milk—is an effective method for making cheese.
- Further research is needed to enhance cheese processing techniques and to investigate the utilizatione of whey in nutritious diets.

Key points to consider include the following:

- Adding starter cultures to cheese milk promotes acidification, which influences various aspects of the cheese-making process. This ultimately affects the cheese's composition through lactic acid production and a decrease in curd pH;
- 2. The recommended concentration of chymosin can be applied at low to medium levels.

Based on the results, we recommend using camel milk to produce commercial cheese!

THANK YOU

FOR YOUR ATTENTION !