

About me

- Pakistani
- Veterinarian/MBA
- Over a decade in UAE
- South-East Asia to North Africa.
- 1 Cow 175,000 cows

PIPELINE

PEAK 40391-ET 3396 TPI, 1404 NM\$ AltaMAKEOVER x SHEEPSTER

PEAK CASANOVA-ET 3363 TPI, 1393 NM\$ CATAPULT x AltaEXQUISITE

PEAK LEXION-ET
3389 TPI, 1379 NM\$

AXFORD x MERLE

COOKIECUTTER 92469-ET 3403 TPI, 1280 NM\$

AltaINSPIRE x LETCHWORTH

PEAK STORMSURGE-ET 1430 NM\$, 3231 TPI SHADOW x EXTREMO

PEAK SONATA-ET 1417 NM\$, 3255 TPI MAGICMOOLA x ZAPPY

What should the cow of the future look like?

Answer: The best cows of today!

2025 Industry Updates

APRIL 2025 Base Change

- Record gains for production
- Steady shift for CR and UDC/PTAT

Milk	Fat	Prot	PL	DPR	CCR	HCR	PTAT	UDC	FLC
750	45	30	2.5	-0.2	0.5	1.0	0.6	0.8	0.1

2025 Net Merit (NM\$) Update

- More emphasis on Milk, Fat & FSAV
- Reducing fertility trait emphasis and shifting to CCR, HCR and EFC

Relative emphasis on traits (%)

PDS MEPS CYS NMS NMS NMS NMS NMS NMS NMS NMS NMS

	PD\$	MFP\$	CY\$	NM\$	NM\$	NM\$	NM\$	NM\$	NIVI\$	NM\$	NIVI\$	NIVI\$
	1971	1976	1984	1994	2000	2003	2006	2010	2014	2017	2021	2025
Milk	52	27	-2	6	5	0	0	0	-1	-1	<1	3
Fat	48	46	45	25	21	22	23	19	22	24	29	32
Protein		27	53	43	36	33	23	16	20	18	20	13
PL				20	14	11	17	22	19	13	16	13
SCS				-6	-9	-9	-9	-10	- 7	- 7	-3	-3
UDC					7	7	6	7	8	7	3	1
FLC					4	4	3	4	3	3	<1	<1
BWC					-4	-3	-4	-6	-5	-6	-9	-11
DPR						7	9	11	7	7	4	2
SCE						-2						
DCE						-2			•••			
CA\$							6	5	5	5	3	3
HCR									1	1	<1	<1
CCR									2	2	1	2
LIV									•••	7	4	6
HTH\$									•••		1	2
EFC									•••		1	1
HLIV									•••		<1	<1
RFI											-4	-7

EFFICIENCY – doing more with less

Production – *starting point*

- Single largest contributor to revenue on every dairy!
- Milk vs. Components
 - How does the dairy get paid?
- Per year gains for production at record pace today!

EFFICIENCY – conservation of resources

Feed – largest expense for most dairies

- Turning more feed into production is still the path to efficiency!
- Feed Saved (FSAV) is step in the right direction!
 - **FSAV** = **BWC** (body size reduction) + **RFI** (feed intake minimized)
- U.S. methane trait likely in the next 2-3 years
 - Likely to still favor efficient production and feed efficiency

HEALTH – fertile, long-lived cows

- Analysis of AgSource data on 400K cows born 2010-2013
 - Comparison to genetic profile and culling data
- **Productive Life** with the direct genetic impact on longevity
 - Conformation traits not a good way to improve longevity
 - Negative genetic correlation to PL
 - Strong relationship with stature

HEALTH – fertile, long-lived cows

Why aren't we making genetic progress for DPR today?

- Management played a huge role in repro in the last 20 years
 - Presynch, Ovsynch, Double Ovsynch, activity monitors, etc.
- Major "resistance" to production traits
- How is DPR calculated?
 - Days Open and Translated to Preg Rate
 - 1.0 DPR = 4 days open
 - 154 days open in 2003 vs. 122 in 2021
 - Happy medium trait?

HEALTH – fertile, long-lived cows

Cow & Heifer Conception Rate - CCR & HCR

- Conception rate shows ability to turn an insemination into a pregnancy
 - Primary goal in repro programs today
- Calculated from pregnancy data
- Proven ability to improve genetic level over the last 10+ years
- Less genetic "resistance" to production
- Opportunity to focus on heifer repro

What Else?

Methane Emission trait

Individual health traits- e.g lameness

Heat Stress resilience- e.g Slick gene

Disease Resistance- e.g BoLA-DRB3 gene polymorphism linked to FMD resistance?

Gene Editing/CRISP-Cas9 e.g trait selection

Precision Livestock farming- e.g Gait sensors, milk sensors

Rumen Microbiome PTAs-e.g Microbial biome for feed efficiency

THE RESERVE OF THE PERSON NAMED IN COLUMN 1										
NAAB	Name	NM\$	TPI	CFP	Milk	DPR	HCR	CCR	EFC	REI
011HO17100	PEAK CH ALTAENGAGE-ET	1367	3206	228	1537	-1.1	3.0	0.8	5.8	1.2
011HO17209	PEAK ALTAHAWAII-ET	1324	3222	224	1103	-0.2	1.6	1.5	5.2	1.1
011HO17191	PEAK ALTAENIGMA-ET	1318	3160	196	1892	-0.3	0.7	1.8	5.8	1.1
011HO17251	PEAK ALTAFUNLAND-ET	1290	3243	229	1268	-0.3	1.4	2.0	5.9	1.2
011HO17079	PEAK ALTAFIELDGOAL-ET	1239	3252	225	1224	-1.7	4.1	1.1	4.7	1.2
011HO16842	OCD PEAK ALTAJTOWN-ET	1232	3162	210	1859	-1.0	2.5	2.2	3.8	1.1
011HO17015	PEAK ALTACADENCE-ET	1223	3205	197	1928	-0.8	3.6	1.4	3.0	1.1
011HO16927	PLAIN-KNOLL ALTAHUBBLE-ET	1212	3158	187	1854	-0.3	2.6	1.5	4.8	1.3
011HO17170	PEN-COL ALTASKIPPER-ET	1194	3110	206	2290	-1.9	3.3	0.9	5.9	1.2
011HO16884	PEAK ALTAOVERLOAD-ET	1168	3132	229	1945	-1.5	3.4	1.9	7.3	1.6

REI – Repro Efficiency Index

- Multi-trait selection for female fertility
 - Utilization of four repro-focused traits
 - Replace DPR as go-to number for repro
- Supports increased focus on precision insemination strategies
 - CR, sorted semen, inventory management
- Increased focus on heifer repro
 - All cows must become pregnant as heifers
 - Fertile heifers become fertile cows
- Prioritizes cow fertility performance
 - More precise matings for cows (sorted semen)

MUI – Modern Udder Index

- Focus on functional, durable udders
 - Aligns udder selection with data on maximal lifetime ECM production
 - Addresses trend toward shorter, closer teats
 - Does not make cows bigger!
 - Today's UDC = bigger cows, worse milkability
- Complements focus on longevity (PL)
- Positive relationship with production
- Industry-leading step towards conformation maintenance phase

Summary

- Keep the most important thing, the most important thing!
 - Align herd goals to selection index
 - Let the selection index do the work
 - Minimize threshold traits
- Use best bulls possible on the smallest group of highest females

